SpaceX CEO Elon Musk says major Starship engine bug is fixed as Raptor testing continues


SpaceX CEO Elon Musk has revealed the latest official photo of the company’s Raptor engine in action and indicated that a major technical issue with vibration appears to have been solved, hopefully paving the way for Starhopper’s first untethered flights.

Partly due to Musk’s own involvement in the program, SpaceX’s propulsion development team have struggled to get any single Raptor engine to survive more than 50-100 seconds of cumulative test fires. According to information from sources familiar with the program, Musk has enforced an exceptionally hardware-rich development program for the first full-scale Raptor engines to such an extent that several have been destroyed so completely that they could barely be used to inform design optimization work. Although likely more strenuous and inefficient than it needed to be, the exceptionally hardware-rich test program appears to have begun to show fruit, with the sixth engine built (SN06) passing its first tests without exhibiting signs of a problem that has plagued most of the five Raptors that came before it.

(adsbygoogle = window.adsbygoogle || []).push({});

Resonance: not even once

In his tweet, Musk cryptically noted that a “600 Hz Raptor vibration problem” appears to have been fixed as of SN06’s first few static fire tests since arriving in McGregor, Texas. More likely than not, the self-taught SpaceX executive is referring to the hell that is mechanical resonance in complex machines and structures. Shown below, the Tacoma Narrows Bridge’s 1940 collapse – quite possibly the single most famous civil engineering failure of all time – is an iconic example of the unintuitive power of resonance in complex systems.

An excellent overview of the challenges and fairly young history of mechanical resonance in modern engineering.

When it was inaugurated, the first Tacoma Narrows Bridge was one of the longest suspension bridges ever built and implemented new techniques and technologies that had never been tried at such a large scale. As Grady (Practical Engineer) aptly notes, mechanical resonance – in this case, triggered by consistent winds running through the Puget Sound – simply wasn’t something that period engineers knew they had to worry about. When rapidly pushing the envelope of engineering and construction, the chances of discovering entirely novel failure modes also increases – it’s simply one of the costs of extreme innovation.

The first finalized Raptor engine (SN01) completed a successful static fire debut on the evening of February 3rd. (SpaceX)
Just five days after its first ignition, SpaceX successfully tested Raptor SN01 at more than twice the thrust of Merlin 1D. (SpaceX)
The latest official photo of Raptor testing in McGregor. This engine is likely SN06, the sixth Raptor produced in 2019. (SpaceX/Elon Musk)

Luckily for SpaceX, the company doesn’t have to clash with the immense challenge of testing something as large, complex, and expensive as a suspension bridge. Raptor, Starship, and Super Heavy need not necessarily be perfect on SpaceX’s first try, whereas civil bridges must essentially be flawless on the first try, despite being one of a kind. This is why SpaceX has been chewing through an average of one Raptor engine per month since February 2019 – by testing engines to destruction and aggressively comparing engineering expectations with observed behavior and post-test hardware conditions, rapid progress can (theoretically) be made.

Instead of spending another year or more analyzing models and testing subscale engines and components, SpaceX dove into integrated testing of a sort of minimum-viable-product Raptor design, accepting that the path to a flightworthy, finalized design would likely be paved with one or several dozen destroyed engines. According to Musk, the biggest pressing design deficiency involved a mode of mechanical resonance that may or may not have been predicted over the course of the design process. Dealing with unprecedented conditions, it’s not particularly surprising that some sort of new resonance mode was discovered in Raptor.

For the time being, SpaceX continues to work around the clock to build its first two orbital Starship prototypes (one in Texas, one in Florida), while also outfitting Starhopper and completing any possible engine-less tests in anticipation of the first flightworthy Raptor’s arrival. If Musk’s early analysis proves correct and Raptor SN06 makes it through lengthier static fire tests unscathed over the next week or so, the engine could potentially be delivered to Boca Chica as early as mid-July.

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.

SpaceX CEO Elon Musk says major Starship engine bug is fixed as Raptor testing continues


<!–

View Comments

–>

var disqus_shortname = «teslarati»;
var disqus_title = «SpaceX CEO Elon Musk says major Starship engine bug is fixed as Raptor testing continues»;
var disqus_url = «https://www.teslarati.com/spacex-elon-musk-raptor-engine-bug-fixes/»;
var disqus_identifier = «teslarati-108267»;

Comments
Teilen:
Schreiben Sie einen Kommentar

Ihre E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

one × four =